Roitman. Growth of Crithidia at high temperature: Crithidia hutneri sp. n. and Crithidia luciliae thermophila s. sp. n.. J. Protozool. 24: 553-556, 1977.
Clark CG. Riboprinting: A tool for the study of genetic diversity in microorganisms. J. Eukaryot. Microbiol. 44: 277-283, 1997. PubMed: 9225441
Goncanlves De Lima VM, et al. Comparison of six isoenzymes from 10 species of Crithidia. J. Protozool. 29: 397-401, 1982.
Fish WR, et al. The cyclopropane fatty acid of trypanosomatids. Mol. Biochem. Parasitol. 3: 103-115, 1981. PubMed: 7254247
Teng SC, et al. A new non-LTR retrotransposon provides evidence for multiple distinct site-specific elements in Crithidia fasciculata miniexon arrays. Nucleic Acids Res. 23: 2929-2936, 1995. PubMed: 7659515
Da Silva JB, Roitman I. Effect of temperature and osmolarity on growth of Crithidia fasciculata, Crithidia hutneri, Crithidia thermophila, and Herpetomonas samuelpessoai. J. Eukaryot. Microbiol. 29: 269-272, 1982.
Cho J, Eichinger D. Crithidia fasciculata induces encystation of Entamoeba invadens in a galactose-dependent manner. J. Parasitol. 84: 705-710, 1998. PubMed: 9714198
type strain
|